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Abstract—In this paper an enhanced nonlinear model 
predictive control (En-NMPC) method driven by control error 
compensation with entropy optimization and unknown state 
estimation is proposed for high-performance control of 
multivariable and non-Gaussian stochastic dynamic systems. 
First, the extended Kalman filter is used to estimate the 
unknown states online, and the estimation of posterior states 
are used as the input of the neural network compensator, so 
that the unknown states which are difficult to use in basic 
NMPC can be fully applied in the compensation control input; 
Then, the kernel density estimation is used to indirectly obtain 
the control error entropy of the non-Gaussian dynamic system. 
Guided by the optimization performance index which is 
constructed mainly about the control error entropy, the output 
weight of the compensator is optimized to tune the 
compensation effect; Finally, compensation control and basic 
predictive control are integrated to achieve high-performance 
control of stochastic dynamic systems. The control error of the 
proposed method and the upper bound of the state estimation 
error are analyzed by inductive reasoning method to ensure 
that the closed-loop system has input-to-state stability about 
the disturbances. Data experiments of sewage treatment 
process verify the superiority and practicability of the 
proposed method.  

Index Terms—Nonlinear model predictive control (NMPC), 
enhanced NMPC(En-NMPC), compensation control, entropy 
optimization, unknown state estimation, input-to-state stability, 
wastewater treatment process (WWTP) 

I. INTRODUCTION 

S a primary multivariable control method in industrial 
practice, model predictive control (MPC) successfully 

obtains the optimal control law in the prediction horizon by 
solving an optimal control problem (OCP), and further 
extends the feedback stabilization which is common in 
conventional control methods to global optimization [1]-[3]. 
With the massive increase in computer performance, the 
problem of practical application of model predictive control 
caused by computing pressure has been greatly alleviated, so 
the research on the new framework of model predictive  
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control with high performance has received extensive 
attention from both industry and academia [3], [4]. From the 
perspective of the system, the existing MPC research is 
mainly divided into two types, namely MPC for deterministic 
system and MPC for uncertainty system. MPC for 
deterministic system (also known as deterministic MPC) has 
mature solutions from 2000, but for uncertain system, 
whether in the form of additive disturbances, state error, or 
model error, uncertain MPC is still a research topic in the 
current academic circles. 

For the uncertain MPC problem, it is usually not the best 
optimal control law by solving the open-loop optimal control 
problem without considering the uncertainties in the 
prediction horizon [5]-[7]. At present, uncertainty MPC is 
mainly divided into two categories, namely robust MPC 
(RMPC) [6] and stochastic MPC (SMPC) [7]. Liu et al. [8] 
proposed a robust min-max RMPC algorithm, which tries to 
find the optimal control law in the worst case caused by 
uncertainties to ensure stability, so the performance of the 
control law obtained by the algorithm is relatively 
conservative. In order to further reduce the conservation of 
the algorithm, a Tube-based RMPC algorithm is proposed in 
[9], which separates the deterministic system from the actual 
system by adopting the separation control strategy. Then, by 
transforming the control of the actual system into the control 
of the deterministic system and restricting the system states in 
a subset of constraints, this method effectively reduces the 
conservatism. In general, the RMPC algorithm can only 
handle the problems under the bounded and determined 
uncertainties. To deal with the control problems with more 
constraints of uncertainties, the SMPC based on scenario 
generation is proposed in [10]. This method uses the 
probability density function (PDF) of disturbances to sample 
a large number of independent and identically distributed 
disturbances. Due to the solution of the OCP based on 
scenario generation will tend to the solution of the original 
OCP with a high probability, the control algorithm can deal 
with more various constraint types of noises, when the 
number of scenarios reaches a certain amount. 

It should be pointed out that the deterministic MPC usually 
does not consider the influence of uncertain factors when 
designing the control law. It only calculates the predictive 
control law by a nominal model, and then analyzes the 
performance of the closed-loop control system for a certain 
uncertainty under the control algorithm, so the algorithm 
itself lacks a dynamic rejection mechanism for random 
disturbances [11]; While the uncertainty MPC considers the 
influence of uncertain factors during the design of the 
controller, it turns the optimization problem into a minimum- 
maximization problem to get a conservative solution.  
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Fig.1. The control architecture of the proposed En-NMPC 
 
Therefore, the assumptions required to ensure the stability of 
the algorithm are generally more conservative, and the 
control effects are affected by the types of noises. Sometimes 
it is hard to obtain a feasible solution when the conditions are 
extreme [7]. Moreover, some deterministic MPC algorithms 
have been applied to a certain extent in practice due to their 
simple forms and better decoupling control effects especially 
when the operating conditions are stable and less noisy. Such 
as the work in [12] achieves good decoupling effects in the 
polymerization reactor by using the deterministic MPC 
algorithm. However, when the operating conditions and 
disturbances change greatly, these methods always tend to 
poor control effects, due to the lack of a mechanism to 
dynamically adjust for such disturbances and other stochastic 
uncertainties. When facing the impact of strong noises and 
disturbances, then, if turning to adopt the uncertain MPC 
algorithm, such as the above RMPC or SMPC, the existing 
predictive control structure can only be abandoned and the 
control structure should be redesigned according the 
uncertain MPC algorithm at a great cost. On the contrary, the 
control effect of uncertain MPC will become more 
conservative, when the conditions gradually tend to stable 
again. Therefore, in view of the stochastic noises and strong 
disturbances which are common in practical industry systems, 
how to improve the performance of existing deterministic 
MPC at low cost without changing the existing predictive 
control structures is the focus of this paper.  

Focus on the above challenges, this paper proposes a novel 
enhanced NMPC (En-NMPC) method based on online 
estimation of unknown states and neural network dynamic 
compensation of control error with entropy optimization. As 
shown in Fig.1, the proposed En-NMPC is mainly divided 
into two parts, namely the deterministic NMPC part and the 
proposed compensation control part. The main innovations of 
the proposed method are as follows: 

1) In order to make full use of the unknown state 
information of the stochastic dynamic system during 
control [13],[14], the extended Kalman filter (EKF) is 
used to estimate the unknown or unmeasurable states 
online, so that the estimated posteriori state information 
can be fully applied in the compensation control part. 

2) The RBF network [15]-[17] is used to nonlinearly map 
the posteriori states of the dynamic system, estimated by 
the EKF, to obtain the optimal compensation for the 
control input calculated by the deterministic NMPC. By 
tunning the output weight of the RBF compensator based 
on minimizing the performance index about the control 
error entropy indirectly calculated by kernel density 
estimation [15], [16], it can effectively reduce the 

fluctuation of control error caused by non-Gaussian 
noises and stochastic disturbances. Moreover, the Elbow 
algorithm [18] and the K-means clustering algorithm are 
used to obtain the center vectors of the hidden layers. 

3) The inductive reasoning method is used to prove that the 
controlled system has input-to-state stability (ISS) under 
the disturbances, and the state estimation calculated by 
EKF has bounded-error, which ensure the stability and 
excellent control performance of the proposed control 
strategy. At the same time, the effectiveness and 
superiority of the proposed method are verified through 
data experiments of sewage treatment process. 

Notation: Define the upper bound of x  is | |x   
sup{|| ||, }kx k  ; Continuous function 1 :h     is a 
class K  function which means it is monotonically 
decreasing and satisfies 1(0) 0h  ; 2 :h     is a class 
K  function which means that it is a K  function and 
satisfies 2 ( ) ,h s s  ; 3 :h        is a class 
KL  function, for any 0t  , 3 ( , )h t  is K  function, and 

3 ( , )h s   is monotonically decreasing with 3 ( , ) 0,h s t t   
for any >0s . 

II. PROBLEM STATEMENT 

Consider the following nonlinear dynamic system: 

1 ( , , )k k k kx f x u w                                    (1) 

( , , )k k k ky h x u v                                     (2)  

where n
kx   represents the state, and m

ky   indicates 
the measured output, and n

ku   is the control input. kw  
means the additive process noise, and kv  is the additive 
measurement noise. ( )f   and ( )h   are the nonlinear 
equations. 

For the dynamic nonlinear discrete-time system described 
in Eqs.(1) and (2), its nominal model is： 

1 nom ( , ) ( , ,0)k k k k kx f x u f x u                         (3)  

nom ( , ) ( , ,0)k k k k ky h x u h x u                        (4)  

where fnom(.) and hnom(.) are the nonlinear functions of the 
nominal model of the system without considering the 
influence of noises. For the deterministic NMPC shown in 
Fig.1, the optimal control problem in the finite time horizon 
of the discrete-time system based on Eqs.(3) and (4) is 
expressed as the following Problem 1: 

Problem 1: Let xk is the discrete-time system state at 
sample time k, and the optimization problem of the nonlinear 
predictive control under the quasi-infinite time horizon can 
be described as:  

1

0 0
min ( , ( )) ( , )

N

u k i k k i ki
x F x uJ u



 
                 (5) 

The following constraints are satisfied during prediction 
horizon: 

nom1 ( , ),

, [ , 1]

, [ , 1]

ki k i k i k k k

i k

i k

x f x u x x

u U i k k N

x X i k k N

  

 



  

   



                   (6)  

Even without un-modeled error and external disturbances, 
the system states obtained in the prediction horizon may also 
be different from the actual system due to the finite horizon. 
Therefore, in order to better distinguish the states in the 
prediction horizon from the real states. We use i kx  to 
represent the state and i ku  represent the control input in 
prediction horizon. Besides, X and U are respectively the 



  

constraint domain of the state and control input. To simplify 
the analysis, the prediction horizon and the control horizon 
are the same. In Eq.(5), ( , ) :F x u X U    is continuous 
with respect to the variables x  and u , and simultaneously 
satisfies ( , ) 0F 0 0 , and also satisfies with ( , ) 0,F x u   
( , ) \{ , }x u X U  0 0 .  

For Problem 1, there are many classical results, such as the 
algorithm in [11]. However, they do not consider the 
influence of disturbances on the system. Actually, the 
practical industrial systems are widely affected by various 
noises and uncertain dynamics, thus [11] is not the optimal 
solution of the Problem 1. To fix this, this paper designs the 
compensation control input kU 1 2

T[ , , , ]k k N ku u u     , 
then makes k k kU U U     tend to the optimal solution as 
much as possible. Since NMPC solves a new optimal control 
problem at every sample time, and only applies the first 
element of the control sequence to the actual controlled plant, 
it only needs to design 1 ku  so that: 

1 1 1k k ku u u                                     (7) 

For the proposed En-NMPC, the basic predictive control 
input and the compensation control input are respectively 
obtained by: 

1

01 0
arg min ( , ( )) ( , )

N

uk k i k k i ki
u x u F x uJ



 
              (8)            

T
1

ˆ( )k k kW xu                               (9) 

where 1 ku  is the basic prediction control input by solving 
Problem 1, and 1 ku  is the compensation control input by the 
proposed compensator; ( ) p    is the RBF of the 
compensator, ˆkx  is the estimated value of the unknown state 
obtained by EKF, and T

kW  is the output weight matrix of 
RBF network compensator. Moreover, 0x  is the initial state, 

0 1{ , , }u u u   is the control sequence. 
Remark 1: For the proposed En-NMPC, 1 ku  can be 

obtained by tuning T
kW  of the RBF network compensator in 

Eq.(9). This adjustment can be achieved through online or 
offline data learning according to the operating conditions, 
which will be described in detail in Section III below. To 
facilitate the subsequent analysis, the state 0( ; , )kx k x w  
of the system at time k  is represented by the function ( )   
which can be derived recursively by Eqs.(1) and (2), and the 
same as the following generalized system depicted by Eq.(39). 
Here, 0 1{ , , }w w w   is the disturbance sequence.              □                     

III. CONTROL ALGORITHM 

This section presents the specific algorithm of the En- 
NMPC shown in Fig.1, which mainly includes two parts: the 
unknown state estimation by EKF and the RBF network 
compensator with entropy optimization. Since the basic 
deterministic NMPC mainly solves Eq.(8), it has been 
discussed in many literatures, such as in [5],[11], so it will not 
be repeated here. 

A. Unknown State Estimation by EKF 

For multivariable stochastic dynamic systems, in order to 
make full use of the unknown internal state information 
during control, the EKF technique is used to estimate the 
unmeasurable or unknown internal states online [19]. The 
EKF online estimation algorithm is mainly composed of two 
parts: state prediction and state updating. 

The state prediction algorithm is as follows: 

1 1 1
T T

1 1 1k k k k k k kP A P A F Q F 
                          (10)                   

1 1ˆ ˆ( , )k k kx f x u 
                                           (11)                                             

where 
1

1 ˆk
k x

A f x 


     and 
1

1 ˆk
k x

F f w 


    . 

The state updating algorithm is as follows: 
T T 1T( )k k k k k k k k kK P C C P Z GC Z                        (12) 

ˆ ˆ( )ˆ )( , kk k k k kx x K y h x u                                (13) 

( )k k k kP I K C P                                             (14) 

where 
ˆk

k x
C h x     and 

ˆk
k x

Z h v    . 

In Eqs.(10)-(14), ˆkx  stands for the priori estimated state, 
ˆkx  is the posterior estimated state, kK  is the Kalman gain 

matrix updated by Eq.(12) at each sample moment, kP  
represents the transfer matrix of priori estimation, and kP  
stands for the transfer matrix of posterior estimation. 
Moreover, kG  is the variance of the measured noise and kQ  
is the variance of process noise.  

Assumption 1: In Eqs.(1) and (2), ,k kw v   are two 
bounded, zero-means, non-Gaussian and mutually 
independent noises, and   is the constraint domain of the 
noises. Their respective variances can be calculated, but the 
probability density functions (PDF) are unknown.                   □  

Remark 2: Since using the EKF to estimate the states, it is 
necessary to ensure Assumption 1 that the variance of wk and 
vk can be calculated or already known. However, if the 
system states do not need to be estimated by EKF, the prior 
information about respective variance of wk and vk is not 
required. As for the other part of the proposed algorithm, it 
has no special restriction on the respective PDF of wk and vk, 
so long as the noise are bounded and mutually independent. □                               

B. Learning Based Control Error Compensation 

In this paper, a three-layer RBF network is selected to 
construct the compensation controller for the proposed En- 
NMPC to obtain the optimal compensation control input. The 
input of the RBF network compensator is the state ˆkx  
estimated by the EKF, and the output of the hidden layer is 

ˆ( )kx  which is depicted by Eq.(15), and 1 ku  is the output 
of the compensator calculated by Eq.(16): 

   
1 2

2 2
rbf

( ) ( )ˆ ˆ ˆ ˆ( ) [ , , , ]

ˆ ˆexp , 1,2

( )

( ) , ,

k k k k

i k k i

px x x x

x x c i p

  

 

   

 

 



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





       (15)   

1
T

1

T ˆ

[ , , ,

( )

, ]
k

k p

k k

l

u

W w w

W

w

x  







  

                         (16)  

where ic  is the center vectors of iG , and iG  is the category 
divided from 1̂ ˆˆ }ˆ{ , , , ,i kX x x x      by the partition 
function ( )C i , whose definition is given in the following 
section. Moreover, p  is the given number of the center 
vectors, rbf  is the width of the kernel, and kW  is the output 
weight matrix of the compensator. 

1) Unsupervised Learning of Hidden Center Vectors 

At the stage of unsupervised learning of hidden center 
vectors, the Elbow algorithm in [18] is first used to obtain the 
number p of cluster centers. Then, the unsupervised K-means 
clustering algorithm is used to calculate the cluster centers of 
the given input data set X̂   1{ , }ˆ ˆ, ,ˆ ,i kx x x     which are 
used as the center vectors of the hidden layer. Specifically, 
the data set X̂  is divided into p  classes iG , and the classes 
are satisfied with: 

i jG G    and 
1

p

ii
G X


  

The cluster centers of iG  is ic , then 1[ , , ]pc c c   is used as 
the center vectors of the hidden layer. At the same time, each  



  

Algorithm 1: Unsupervised learning of ci  in RBF network compensator 

Input: The data set 1ˆ ˆˆ }ˆ{ , , , ,i kX x x x     . 
Output: The number p of center vectors and the center vectors. 
1: Calculate p by using the Elbow algorithm in [18]. 
2: Randomly select p samples as the initial cluster centers tc  at t=0: 

3: Cluster the samples by 2

1 ( )
arg min || ˆ ||tt

p t
ll C i lC

ix c
 

   ，where 

( )tC i l  is the partition function at t time. 
4: Assign each sample to the class of its nearest center. 

5: Calculate 1

( )
ˆt

t
l i lC i l

c x n 


  as the new cluster centers. 

6: If the iterations converge, stop training, else t=t+1 and turn to 
Step 2. 

 

ix  of the k  samples in X̂  are respectively represented by an 
integer i  {1, 2, , }k , and each lG  of the p  classes is 
represented by an integer {1,2, , }l p  . Then, the partition 
function ( )C i l  is used to represent the mapping of the 
sample ix  to lG . The detailed solving algorithm is shown in 
Algorithm 1. 

2) Entropy Optimization Based Supervised Learning 
for Weight Matrix 

After the center vectors of the hidden layer are determined, 
the gradient descent algorithm is used to further tune the 
output weight matrix Wk of the network. Since it is a kind of 
supervised learning, it is necessary to first design a suitable 
optimization performance index. Conventional performance 
indicators such as mean and variance cannot fully describe 
the characteristics of non-Gaussian dynamic systems, so 
entropy indicator is used to help construct the performance 
index. Compared to the indicators of mean and variance, 
entropy is a more effective measure of the diversity, 
uncertainty and randomness of data [19], [20]. The smaller 
the entropy is, the less volatility and randomness of that data 
are. Specific to the control error, the smaller the control error 
entropy is, the higher the stability of the closed-loop system 
and the smaller the control error fluctuation are. 

The entropy H2(ql) of random variable ql is calculated by：  

2 ( ) log ( )l lH q V q                               (17) 

where V(ql) is the information potential of ql. The entropy 
H2(ql) is decreasing with respect to V(ql). In order to reduce 
the computation cost, the optimization of the entropy of the 
control error can be transferred to optimize the information 
potential. However, the entropy of a set of data can only 
reflect the fluctuation, so it is necessary to add a limit to the 
mean of control error in the performance index to achieve 
stable tracking control.  

To sum up, for the multivariable stochastic dynamic 
system, the following performance index about the entropy of 
the control error is defined as follows: 

21 joint
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1 1

1

3 41
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J e

u u
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                 (18) 

where m is the number of output, T
1 1k ku u   represents the 

energy of compensation input, 1 2 3 4, , ,R R R R  are given 
constants, ,i ke  is the control error of the i-th output at k  time. 
To further analysis, ,1 ,[ , , ]k

i i i ke e e   is the control error of 
the i-th output from beginning to k  time, and 

1[ , , ]k k
k me e e   are the control error of m outputs. Moreover, 

joint ( )kV e  is the joint information potential of data ke , and 
( )k

iE e  is the mean value of the control error which can be 
calculated by: 

ˆ( ) ( )deE e e e e                              (19) 

and it is used to characterize the magnitude of the control 
error.  

In Eq.(18), the edge information potential V(ql) and the 
joint information potential Vjoint(Q) can be calculated as 
follows:   

  joint

2

2

1 1( )

( ) ( )d

, , d

lq

Q

l l l

m mQ q q

V q

q
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q

q
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


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








   

                (20) 

where 1[ , , ], ,l mQ q q q    are m  random variables, γql is 
the PDF of variable ql, Q  is the joint PDF of Q .  

Due to the precise statistical PDF of control error is not 
available for practical industrial processes in advance, the 
kernel density estimation (KDE) [15], [20] is used to 
calculate the PDF of the control error. Aim to the PDF of ql 
and the joint PDF of Q, they are usually calculated by the 
following equations:  

1
,1

1 2 2

ˆ ( )

( ) ( 2 ) e

( )

xp( 2 )

l l

l

N

q l l ii

l

l

l l l

N q q

q q

q 


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




  

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
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


 


      (22) 

where ( )
l lq  is the Gaussian kernel function for each 

variable lq , and ,1 ,{ , , }l l Nq q  are the N independent 
identically distributed samples of variable lq . Here, Eq.(21) 
is used to calculate the PDF for one dimensional data, while 
Eq.(22) is used to calculate the joint PDF for multi- 
dimensional data. 

It can verify that the Gaussian kernel function satisfies:  

lim | ( ) | 0,
l lq l lq q  ( ) 0,

l lq  ( )d 1l lq q       (23) 

That is it meets the validity requirement of KDE on kernel 
function. 

Noted that the integration of the product of two Gaussian 
function can still be evaluated by another Gaussian function. 
For ease of calculation, by putting Eq.(21) into Eq.(20), the 
calculation of the edge information potential V(ql) can be 
transferred into the following way: 
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Similar to this, by putting Eq.(22) into Eq.(20), the 
calculation of joint information potential Vjoint(Q) is 
transferred into the following condensed form to calculate: 
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Algorithm 2: Output weight matrix optimization of compensator 

Input: The estimation of state ˆkx . 
Output: The weight kW  of output layer. 
1: Initialize kW , the learning rate  , and the threshold  . 
2: Obtain the gradient of Eq.(18) as -1 -1k k k kJ J W W    ∣ . 

3: If T
k kJ J     , and then the best weight is -1kW , else return to Step 4. 

4: Update the weight by -1k k kW W J   . 
5: Return to Step 2. 
 

Algorithm 3: En-NMPC implementation algorithm 

1: Find the center vectors of the RBF compensator by Algorithm 1. 
2: Estimate the information potential of control error by Eqs.(20)-(22). 
3: Calculate the optimization performance index by Eq.(18). 
4: Estimate +ˆkx  by Eqs. (10)-(14). 
5: Obtain the optimal Wk by Algorithm 2. 
6: Calculate 1ku  by Eq. (8) and calculate 1ku  by Eq.(9). 
7: Calculate 1ku  by Eq.(7). 
8: Apply 1ku  to the system, and put 1k k  , then return to Step 5. 
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Thus, in order to facilitate the calculation in the computer, 
Eq.(20) is transferred into the following easy form to 
calculate: 
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After determining the performance index described in 
Eq.(18), the output weight matrix Wk of the compensator is 
optimized by the gradient descent algorithm. The RBF neural 
network has a unique and determined optimal solution and 
does not exist local minimum problem such as the BP neural 
network, this is mainly because the final output is only a 
linear combination between the hidden layer and Wk. The 
implementation steps of the output weight optimization by 
gradient descent algorithm are shown in Algorithm 2. 
 

3) Implementation Steps of the En-NMPC 
After obtaining the optimal Wk, the final output of the RBF 

network compensator can be calculated by Eq.(9), which will 
be used as the compensation control input to the basic NMPC. 
Then the final integrated control input is applied to the 
controlled dynamic system to enhance the control 
performance. In summary, the specific steps of the proposed 
En-NMPC method are given in Algorithm 3.  

Remark 3: The stable output of the RBF network 
compensator is the prerequisite for the efficient operation of 
the proposed control algorithm, so the effective learning of 
the RBF network is extremely important. When the controlled 
plant facing with a poor environment, the online learning can 
be used to adjust the weights of the output layer in real time, 
so as to ensure the performance of the compensation. At the 
same time, due to the simple structure of the RBF network, 
the online learning time generally meets the sampling 
interval requirements. When the environment improves, in 
order to avoid the computational pressure of online learning, 
the historical data can be used for offline learning by Steps 

1-5 in Algorithm 3. When the output weights of the 
compensator tend to converge, the obtained compensator is 
directly applied to the actual system by Steps 6-8 to improve 
the control performance.                                                       □ 

Remark 4: To analyze the convergence of Wk, the second 
derivative of the function Eq.(18) is defined as 2

kR J  . 
Then, Algorithm 2 can ensure the mean square convergence 
of Wk , when the learning rate   satisfies 0 2 max{ }i   , 
where , 1, ,i i l    are the eigenvalues of R . Therefore, the 
convergence can be further guaranteed by tuning 

1 2 3 4, , ,R R R R  in Eq.(18) which are directly relevant to 
2

kR J  .                                                                             □ 

IV. PERFORMANCE ANALYSIS 

For the proposed En-NMPC, the mechanism of control is 
to add the compensation control input to the basic predictive 
control input. Therefore, the stability of the proposed 
En-NMPC algorithm is proved by recursively analyzing the 
norm of the input and output after adding the compensation. 
For the nonlinear system shown in Eqs.(1) and (2), in order to 
facilitate the stability analysis of the control algorithm, the 
following assumptions are made at first. 

Assumption 2：The nonlinear dynamic system shown in 
Eqs.(1) and (2) can be approximated by the following 
equations: 

1 1 1 1 1 1 1( ), ,k k k k k k k kx Ax Bu Fw f x u w                 (25) 

+ , ),(k k k k k k k ky Cx Du Zv h x u v                            (26) 

where A,B,C,D,F and Z are the system matrices of 
appropriate dimension obtained by linearizing the nonlinear 
system, △fk-1 and △hk are the remaining unmodeled dynamic 
terms after linearizing the nonlinear system.                      □ 

Remark 5: The linear model, obtained by linearizing the 
nonlinear dynamic system at the operating point, can usually 
still guarantee the qualitative prediction of the dynamic 
behavior of the system. Actually, it is a common approach to 
use the above linearized model to analyze the stability [21]. □  

Assumption 3: Aim to the remaining unmodeled dynamic 
terms △fk-1 and △hk depicted by Eqs.(25) and (26), there 
exists the constants L1~L5 that satisfy the following 
equations:  

1 1 1 2 1 3 1k k k kf L x L u L w                        (27) 

4 5 6+k k k kh L x L u L v                            (28) 

Remark 6: Considering △fk-1 and △hk are the remaining 
unmodeled dynamic terms after linearizing at operating 
points, the norms of △fk-1 and △hk are usually bounded 
within a range, so the Assumption 3 is always hold, because 
the real positive numbers L1~L5 can be adjusted by the norms 
of xk, uk, wk and vk.                                                               □ 

Assumption 4: Aim to the dynamic system shown in Eq.(1), 
f(.) satisfies the following Lipschitz condition: 

1 1 1 2 1 1 2( , , ) ( , ,0)k k kf x u w f x u L x x                (29)  

where L  is the Lipschitz constant.                                       □  
Assumption 5: For the unmodeled dynamic term △hk in 

Eq.(26) and the unmodeled dynamic term △h2k for EKF, 
there is a constant L7 which ensures the following equation 
hold: 

72 ˆk k k kh h L x x                          (30) 

where ˆkx  is the estimation of state.                                     □ 



  

Lemma 1: The norm of the final integrated control input 
of En- NMPC shown in Eqs.(7)-(9) is bounded: 

1 1
T

1
ˆ( ( ))k k k k k kW x Wu u u u            (31) 

Proof: In Eqs.(7)-(9), 1 ku  is the input obtained by the 
basic NMPC. Since the control input has been restricted 
during the rolling optimization, 1 ku  is bounded. Considering 
that the hidden layer of the RBF network compensator is a 
Gaussian kernel function and the output layer is only a linear 
combination between weight matrix and hidden layer, the 
compensation control input 1 ku  is also bounded, that is, the 
final control input ku  is bounded and Eq.(31) holds. 

Lemma 2：Under Assumption 3, in order to facilitate the 
analysis of the system stability, redefine the vector εk=[xk,zk], 
where xk is the control error, and zk is the cumulative control 
error, then on the basis of Eq.(27), there exists the following 
inequality: 

1 2 3kk k kf L L u L w                       (32) 

Proof: It is easy to find that k kx   from [ , ]k k kx z  , 
then by putting it into Eq.(27), we can obtain: 
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Lemma 3：On the basis of Assumptions 2 and 3, there 
always exists constants M1, M2, M3 that satisfy the following 
inequalities: 

1 1 2 3 1 6( ) +k k k kh M M v W M w L v           (34)                         

where 1 4 4 1 2 24 4 5,M L A L L M L B L L L    and 3M   

4 4 3L F L L .                                                                        □ 

Proof: On the basis of Assumption 4, by substituting 
Eq.(25) into Eq.(28), it can be known that: 
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  (35)                    

Substituting Eq.(32) into Eq.(35), it can obtain: 
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A. Input to State Stability (ISS)  

In order to analyze the input to state stability of the 
proposed En-NMPC, on the basis of the above Assumptions 
2-5 and Lemmas 1 and 2, the recurrence relation of the 
control error is shown in the following: 

1 1 1 1k k k k kx Ax Bu Fw f                            (37) 

The cumulation of the control error zk is shown as follows: 
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Therefore, taking Eqs.(37) and (38) into εk=[xk, zk], it can be 
further converted to the following generalized system: 
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Fig.2 Control of WWTP with the proposed En-NMPC 
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Definition 1[22]: Consider a system ( , )x f x w   and a 
set n   , if the system satisfies ( , )x f x w    for any 

0x   and w , then   is called a robust invariant set 
of the system.                                                                         □ 

Definition 2[22]: Consider the system ( , )x f x w  , and 
its robust invariant set X   containing the origin as an 
interior point, if for any initial states 0x   and w , 
there exists function   belonging to the class K  and 
function   belonging to the class KL  such that the system 
satisfies: 

0 0( ; , ) ( , ) ( ),k x w x k w k                 (40)  

Then the system is input to state stable (ISS) within  .     □ 
Under Definition 2, it can be seen that when the system is 

not disturbed or only affected by attenuation disturbances, the 
system is finally asymptotically stable at the origin; when it is 
subjected to continuous bounded disturbances, the system is 
bounded and stable, and the final convergence range of the 
state trajectory is related to the upper bound of the continuous 
disturbances. On this basis, when the following Theorem 1 is 
satisfied, the gradient descent algorithm can be used to tune 
the output weight matrix, and then the compensation for 
random disturbances can be tuned gradually, which ensures 
the closed-loop control system under the disturbances has the 
input to state stability within the robust invariant set. 

Theorem 1: For the dynamic system described in Eqs.(1) 
and (2), if there exists constants 0 ,0 1     and 

2 2
0{ }E   , making the following relationship satisfied: 

1
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Then, under the En-NMPC control algorithm, the closed- 
loop control system under the disturbances described in 
Eqs.(1) and (2) has input-to-state stability within the robust 
invariant set.                                                                          □ 

Proof. See Appendix A. 

B. Bounded Error of State Estimation 

The accurate state estimation is the basis for the stable 
operation of the RBF network compensator of the proposed 
En-NMPC, so it is extremely important whether the EKF can 
track the states under the compensation. The stability of the 
filter is proved by analyzing the upper bound of the state 
estimation error. Under the condition of Assumption 3, the 
state estimation error is shown as follows: 
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  (42) 

On this basis, the EKF is stable under the En-NMPC 
algorithm when Theorem 2 is satisfied. 

Theorem 2: For the EKF used in the dynamic system 
described in Eqs.(1) and (2), if there are two constants 

0, 0   , which are satisfied with the following 
relationship: 

7 1k kI K C L K L L                    (43)                                                                 
2 2 2 2 2{ } (1 )k kK E vZ                           (44)                                    

2 2
0{ }E                                      (45)                                         

Then, the state estimation error calculated by the EKF is 
bounded in the mean-square sense, under the proposed 
En-NMPC control algorithm.                                          □                                                                                                       

Proof. See Appendix B. 

V. CASE STUDY 

The activated sludge wastewater treatment process 
(WWTP) as shown in Fig.2 mainly utilizes the microbial 
population in the activated sludge to adsorb, oxidize and 
decompose the organic matter in the sewage [23], [24]. Then 
through nitrification, denitrification, phosphorus release, 
phosphorus absorption, etc. to remove nitrogen and 
phosphorus pollutants. The quality of the WWTP depends on 
the two key factors in the sewage treatment: the nitrate 
concentration DNO,2 in the second zone of the biochemical 
pool and the dissolved oxygen concentration DO,5 in the fifth 
zone. Therefore, achieving high-performance and stable 
control of DNO,2 and DO,5 is the key issue in WWTP. The 
dissolved oxygen conversion coefficient KLa,5 of the fifth 
zone is generally adjusted by the blower to control DO,5 in 
aerobic zone, and the return pump is used to adjust the 
internal flow Qa to control DNO,2 of the anoxic zone. However, 
due to the uncertainty and coupling of the biochemical  
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Fig.3 Prediction effect of the developed bilinear model  

 
Fig.4 Control results with and without compensation 
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Fig.5 Changing curve of control input 
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Fig.6 Compensation of control input 
 
reaction process, as well as the stochastic and non-stationary 
fluctuations of influent, the traditional predictive control 
method has poor control effect on the WWTP [24]. 

Here, the pre-denitrification process wastewater treatment 
benchmark platform BSM1 [24] is used as the simulation 
platform to fairly test the effectiveness and superiority of the 
proposed control method. BSM1 is currently the most 
important platform for evaluating the modeling and control 
methods for WWTP. In order to test the effect of the 
compensation of the algorithm when facing the stochastic 
non-stationary fluctuations, the experiments are carried out 
and based on the rainy-day conditions of WWTP. 



  

 
Fig.7 The curve of the performance index 

 
Fig.8 States and its estimation by EKF 

A. Control Experiment I  

First, the bilinear state space model of the WWTP is 
obtained through the subspace identification in our previous 
work [23] as the prediction model in Problem 1. The main 
parameter matrices of the obtained prediction models are as 
follows: 
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Fig.3 shows the prediction effect of the developed bilinear 
model. It can be seen that the subspace identification 
technology can effectively fit the changes in the sewage 
treatment process. Then, by taking the BSM1 platform as the 
controlled plant, the control experiment I of the proposed 
method is carried out as shown in Fig.2. In order to clearly 
demonstrate the effectiveness of the proposed method, only 
use the basic deterministic NMPC described in Eq.(8) to 
control during the first 7 days. After 7 days, the compensation 
controller described in Eq.(9) is added on the basis of NMPC 
which is a comparative control experiment with the first 7 
days. In order to satisfy the convergence condition of the 
compensator described in Theorems 1 and 2, each parameter 
of performance index in Eq.(18) takes the value of R1=0.7, 
R2=1.3, R3=0.6, R4=0.4, η=0.001, and the prediction horizon 
and the control horizon are both N=15. The constraint of 
input Qa is between 0 and 92230 m3/h, and the constraint of 
input KLa,5 is between 0 and 350. Moreover, the covariances 
of noises are selected as Gk=0.04 and Qk=0.03. The number 
of center vectors in the RBF network hidden layer is selected 
as 3 by the Elbow algorithm. In order to find out which states 
have the largest relationship with DO,5  

 

 
Fig.9 The evolution of control error PDF of DO,5 and DNO,2 
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Fig.10 The (a) initial and (b) final joint-PDF of the two control errors 
 
and DNO,2, the canonical correlation analysis method is used 
to analyze the historical data. Finally, the concentration of 
soluble biodegradable organic matter DS and degradable 
organic nitrogen DND are selected as the input of the 
compensator. These two states are also need to be estimated 
online by EKF.  

Fig.4 and Fig.5 show the tracking control effects in rainy 
days with or without control compensation, Fig.6 shows the 
corresponding compensation of the control input Qa and KLa,5 
before and after the seventh day, and Fig.7 shows the change 
curve of the performance index about the control error 
entropy shown in Eq.(18) after adding the compensation 
control. It can be seen that the fluctuations of the control error 
of DO,5 and DNO,2 are significantly reduced after the proposed 
compensation is added to the basic control input, and the 
performance index used to measure the fluctuations of the 



  

 
Fig.11 Cluster centers of historical input data 

 
Fig.12 The adjustment process of output weights of compensator 
 
control error gradually decreases until it converges to a 
smaller value. Moreover, Fig.8 is the online estimation 
curves of two states by EKF, which shows that the proposed 
method can obtain accurate estimation of the unknown states, 
so that the RBF network compensator based on this can keep 
stable all the time. 

Fig.9 is the evolution trend of the PDF of the control error 
about DO,5 and DNO,2 after adding the compensation control. It 
can be seen that due to the compensation control, the PDF 
distribution of the control error changes from the original 
scattered and multi-peaked form to a more concentrated and 
single-peaked form. It can be seen from Fig.10 that after 
adding compensation input, the joint probability density 
function distribution of control error becomes more 
concentrated and the peak value is higher. This means that the 
compensation control effectively reduces the fluctuations of 
the control error of the basic deterministic NMPC and 
improves the control accuracy about DO,5 and DNO,2.  

Fig.11 is the cluster centers of the input data obtained by 
the K-means clustering algorithm, which showing that the 
input data is divided into three categories. Fig.12 shows the 
process that the proposed method to correct the output weight 
matrix of the RBF network compensator by minimizing the 
performance index in Eq.(21). It can be seen that the weight 
matrix of the compensator tends to converge gradually, and 
under the influence of emergencies such as rainstorm, it tends 
to stable after only slight fluctuations.  

B. Control Experiment II  

During the actual production of WWTP, in order to ensure 
that the quality of the effluent reaches the standard while the 
energy consumption of operation is reduced at the same time, 
it is usually necessary to optimize and adjust the setpoint of 
output DO,5 and DNO,2 according to the changes of working 
conditions such as random changes of influent flowrate. 
Therefore, the influent flowrate is increased by 10% on the 
original basis during the 8th day and the 12th day which is 
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Fig.13 Random changes of influent flowrate and the corresponding states in 
rainy days 
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Fig.14 Control results of WWTP under different control methods 
 
depicted between the dotted lines in Fig.13. Moreover, the 
proposed method is further tested for the control performance 
of the setpoint tracking with external random disturbances. 
Specifically, the step disturbances of d1 and d2, with 5% 
amplitude changes, are respectively added to DO,5 and DNO,2 
after the 7th day and 10th day, and the durations are both 10h. 
The relevant parameters of the control system in this 
experiment are consistent with the previous Experiment I. As 
shown in Fig.13, due to the increase of the influent flowrate, 
both DS and DND produce larger fluctuations between the 
dotted lines. However, the EKF in the proposed algorithm 
still achieves an accurate estimation of the states with only 
slight fluctuations.  

Fig.14 shows the comparison of the control effect with 
different methods. It can be seen that under the basic 
deterministic NMPC method, there is a large control error 
between the actual output and their setpoints. However, the 
proposed En-NMPC effectively reduces the control error 
under disturbances. The output just has small and low- 
frequency fluctuations near the setpoints. Only when the 
setpoint changes and the disturbance enters, the actual DO,5 
and DNO,2 produce small peak jitter, but through the rapid 
adjustment of the compensation control input, they quickly 
return to their respective setpoints. Therefore, the proposed 
En-NMPC method can effectively reduce the control error 
and significantly enhance the control performance by adding 
the compensation control input on the basic NMPC.  

IV. CONCLUSION 

For the multivariable stochastic dynamic systems, an 
enhanced NMPC (En-NMPC) method driven by control error 
compensation with entropy optimization and online 



  

estimation of unknown states is proposed to solve the 
problem of insufficient performance of the existing 
deterministic NMPC. This method uses the EKF to obtain the 
posterior estimation of the unmeasured/unknown states as the 
input of the RBF network compensator. Under the 
optimization performance index constructed about the 
control error entropy, the output weight of the compensator is 
tuned to obtain the optimal compensation to the control input. 
The input-to-state stability of the system within a robust 
invariant set and the boundedness of the estimation error for 
EKF have been proved by the inductive reasoning method, 
which ensures the stability and the effect of the proposed 
method. Control experiments of sewage treatment process 
are designed, which fully verify the effectiveness and 
advancement of the proposed method. 

APPENDIX A: PROOF OF THEOREM 1 

Proof: Here, the inductive reasoning method is used to 
prove that all the states of the generalized system, depicted by 
Eq.(39), are bounded in the sense of the mean square value. 
Since the states of the designed generalized system are about 
the error and the integral of the error, the input-to-state 
stability of the system with respect to disturbances is further 
proved by extension that under the proposed En-NMPC 
algorithm. Then, on the basis of Assumption 4 and Lemma 1 
and 2, substituting Eqs.(32) and (34) into Eq.(39), we can get: 
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(46) 
Therefore, there is a constant 1  such that:  

T 2 2
1 1 1{ }E      

It can be seen from the above that at time 1k  , the upper 
bound of the state of the generalized system Eq.(39) is 2 2

1   
in the sense of the mean square. To further analyze the 
input-to-state stability of the algorithm against disturbances, 
the terms of the last inequality in Eq.(46) are analyzed in 
detail. Due to 10 1T   and combined with Eq.(41), it can be 

known that there must be a function ( , )    which is 
belonging to the class KL  function that satisfies:  
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At the same time, it can be seen from Eq.(41) that there is a 
function ( )w  which is belonging to the class K  function 

that satisfies: 
2

2 1 3 40 1 5 ([ ){ ] }E wT T T v Tw w             (48) 

Combining Eqs.(47) and (48), it can be known that there is 
an upper bound in the mean square sense for its state of the 
generalized system 0( ; , )k w  at time k :  

0 0(1; , ) ( , ) ( )w k w                        (49) 
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(50) 
    In the same way, there is a constant τ2 such that the 
following inequality holds: T 2 2 2

2 2 2 1{ } (1 )][E         .                                                                           
Further analysis the terms in Eq.(50) at time k=2. Due to 

0<T1<1, Eq.(51) has a decreasing relationship with respect to 
Eq. (47), so the function ( , )    still satisfies the following 

inequality: 
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In the same way, ( )w  which is belonging to the class K  
function still satisfies the following inequality: 

2
2 2 3 41 2 5 ([ ){ ] }E wT T T v Tw w           (52)                                   

Which is 0 0(2; , ) ( , 2) ( )w w      .  

Suppose that when at time 2k  , there always exists: 
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There is always a constant 1 1,0 1k k    , such that the 

following inequality holds: 
T 2 2 2
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Therefore, when the condition of Eq.(41) is satisfied at 
time k , the mean of the estimation error at time 1k   is 
always less than a constant. when iterating from the initial 
state 0  with k  , the left term in Eq.(55) decreases 

monotonically and tends to zero, due to 0   1 1T  , then 

0( , 1)k    still satisfies the following relationship:   

1

2 2

1 1 1

3 5 0

2

4

{ } 2 { } {[

    ( ,] ) 1}

k k

k

k

k

E E E w

w v

T T T

T kT T

 

 



    
      (55)  

Similarly, ( )   which is belonging to the class K  still 
satisfies the following inequality: 
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Which is 0 0( 1; , ) ( , 1) ( )k w k w        , this means 

that Theorem 1 is proved. 

APPENDIX B: PROOF OF THEOREM 2 

Proof. The stability of the EKF is proved by analyzing the 
boundedness of the estimation error of the state. Under the 
condition of Assumption 3, the estimation error of the state is 
depicted by Eq.(42), so it can be further known that: 
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On the basis of Assumptions 2 and 3, there is an upper 
bound of the estimation error at time 1k  , which satisfies 
the following inequality: 
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There always exists constant 1 1 1,0    such that 
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At time 2k  , the estimation error is similarly analyzed to 
find that: 
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                                                                                        (60) 
There always exists 2 2 1,0    such that 
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Suppose the following inequality exists at time 2k  :                            
T 2 2 2 ,( ) 0 1k k k kkE                                  (62)                   
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Then when at time k+1, the upper limit of the estimation 
error satisfies the following inequality:  
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Further, we can obtain: 
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Therefore, based on the above inequality, there is always a 
constant 1k   that makes the following equation true: 

T 2 2 2 2 2 2
1 1 1 1 1( ) (1 )][k k k k k k kE                     (64)  

That is, the estimation error always has a finite upper bound 
in the mean square sense, thus Theorem 2 is proved. 
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