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Highlights 

• An enhanced MPC method for stochastic system with 
unmeasurable state and non-Gaussian noise is proposed 

• The Kalman filter is used to estimate the state and 
the compensator is calculated without changing the 
existing MPC controller 

• The best compensator parameter is achieved by 
optimizing the variance of the tracking error 

• Stability of the proposed En-MPC method is guaranteed 
in the mean square sense by restricting the upper 
bound of the state 

• Numerical simulation and sewage treatment process 
experiment verify the superiority of the proposed 
method 
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Abstract: The model predictive control (MPC) method is widely used in multivariable process control due to its optimization control nature 
and easy engineering realization. Aiming at the large control error fluctuations caused by non-Gaussian noise, unmeasurable state, and process 
disturbance under the MPC method in industrial practice, this paper proposes a novel enhanced MPC (En-MPC) method that uses Kalman 
filter to estimate unknown states and combines with the state gain matrix for control compensation. Firstly, given the difficulty of measuring 
some key states of actual industrial processes, the unknown state variables are estimated online through Kalman filter technology; Secondly, 
the state estimation values are used as the initial value of the prediction model to obtain the future output information of the system, and the 
open-loop optimization solution is calculated in the finite horizon by solving the optimization objective function. The relationship equation 
between the state variance and the state gain matrix is established and optimized to obtain the optimal gain matrix, which is multiplied by 
the state estimation as the output of the compensation controller. Finally, the solution of the basic optimization controller and the solution of 
the compensator is added together to act as the final control input to the controlled plant. The upper bounds of the state variables of the 
proposed method are proved by the induction method in the root-mean-square sense, and the stability of the system under the algorithm is 
demonstrated. Simulations and sewage treatment process data experiment show the effectiveness and practicability of the proposed method.  
Keywords: Predictive control, Enhanced model predictive control (En-MPC), Control compensation, Unknown state estimation. 

1 Introduction 

The process of modern industrial production is becoming more complicated, and the scale is getting larger than before. 
Naturally, it puts forward higher requirements on the control system. When the control requirements of industrial systems 
develop from equipment-level single-loop control to system-level multi-loop control, the methods such as single-loop PID 
control cannot guarantee the global performance of multi-variable complicated systems, due to the lack of decoupling 
ability. When the control objective of an industrial system develops from single regulation control to overall performance 
optimization, feedback control such as a single PID cannot adjust the dynamic process timely and accurately, and it is even 
more difficult to achieve global optimization. Therefore, the model predictive control (MPC) method with strong multi-
variable and constraint processing capabilities has shown obvious advantages and received more and more attention and 
applications [1-3]. Originated in the mid-1970s, MPC’s basic idea is to solve a finite-time open-loop optimization problem 
online, based on the sampling information at the current moment, and apply the first set of optimized solutions to the 
controlled plant, and then repeat the above process at the next moment [4-5]. Compared with PID and other control methods 
to solve a feedback control law at one time, MPC can better meet the dynamic control performance requirements of the 
system by solving open-loop optimization problems online and obtaining optimized solutions in the prediction horizon [6]. 

In practical engineering applications, it is hard to accurately model industrial processes, and nonlinear constrained 
optimization problems are difficult to solve online in the industrial field. As a result, nonlinear predictive control is still 
subject to many restrictions and linear predictive control has been the mainstay in practical engineering applications. 
Obviously, most industrial systems are nonlinear. Even if the dynamic process can be approximated as a linear system, the 
dynamic process of the system also exhibits nonlinear characteristics due to a series of problems such as constraints on the 
actuator. Besides, when the model predictive controller is designed, its objective function is only about the mean and 
variance of the system output or error. This is reasonable when the noise distribution is relatively uniform because the 
probability distribution can be fully described by the mean and variance at this time [7-10]. However, when encountering 
various forms of noise in the actual industrial site, the above-mentioned objective function of predictive control cannot 
capture the statistical characteristics of all process dynamics, and the open-loop optimal solution obtained in the finite 
horizon is also difficult to satisfy high-performance control requirements. Also, any actual industrial system runs in a 
dynamic environment. No matter what process, disturbances and uncertain dynamics always exist. If these external 
disturbances are not monitored and suppressed in time, they will have an adverse effect on the process, in severe cases, and 
it will also affect the stability and safety of the process operation. Since MPC and other control methods do not directly 
consider and deal with these process disturbances and uncertain dynamics during controller design, it is difficult to obtain 
satisfactory control performance when controlled industrial processes exist strong external disturbances and uncertain 
dynamics, which may lead to a large tracking error of the controlled plant. 

Given the problems of the above-mentioned MPC, inspired by the minimum variance control [11] and the Kalman filter 
technology [12, 13], this paper proposes an enhanced predictive control method to reduce the control error. Based on the 
existing state-space model and the unmeasurable state estimation, the proposed method mainly includes two parts: the first 
part is the basic state-space model optimization controller, which is mainly used to calculate the basic control input and 
ensure the basic control performance of the closed-loop system; the second part is the compensation controller proposed 
to reduce the fluctuation of output, mainly used to suppress the uncertain dynamics and external disturbance of the process, 
and enhance the performance of the closed-loop control system. Moreover, the compensator uses Kalman filter technology 
to calculate the posterior estimation of the unknown state, and the gain matrix of the compensator is updated iteratively 
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through a recursive relationship based on variables which are the uncertain dynamic variance at the current moment. 
Through inductive reasoning, the upper bound of the system state in the root-mean-square sense is proved. The main 
differences between the method in this paper and the methods in the existing literatures are as follows: 

1) Compared with the neural network based predictive control method in [14, 15], the predictive control in this paper 
is based on a state-space prediction model, which has the advantage of stability and practicability since the model 
of the actual industrial plant can be obtained through methods such as subspace identification [16, 17]. 

2) To improve the control effect, different from adding constraints to the state variables in the objective function of 
the existing MPC algorithms [18], this paper considers the influence of the state variables on the output and use 
recursively updated matrix as the gain of the state feedback to reduce the fluctuation of the control error. 

3) To reduce the fluctuation of the tracking error, different from the adjustment strategy of predictive control in [19], 
the method in this paper does not correct the state variables or output of the prediction model but seeks the optimal 
compensation to correct the input. 

4) The proposed enhanced predictive control algorithm, which is based on unknown state estimation and control 
compensation, only adds compensation to the original predictive control input to reduce the fluctuation of control 
error, so there is no need to change the existing predictive control structure, leading to the low cost. Therefore, it is 
easy to implement in engineering practice. 
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Fig.1. The control architecture of the proposed En-MPC 

2 Control Strategy 

The strategy structure of the proposed enhanced model predictive control (En-MPC) method is shown in Fig.1. The 
dashed box is the basic predictive controller. The controlled plant is an actual industrial process that can be approximated 
as a linear model. Rolling optimization obtains an open-loop solution in a finite horizon by solving a present objective 
function. Outside the dashed box is the compensation control algorithm proposed to reduce the fluctuation of control error: 
First, the posterior estimated value of the unknown state variable of the system is obtained through the Kalman filter 
technology. Then, to reduce the variance of the error, an optimal gain matrix is obtained and multiplied by the estimated 
value of the state variable as the compensation of the basic predictive control input. Finally, the obtained integrated value 
of basic control input and compensation input is used as the final control input to act on the controlled plant. 

The controlled plant is described as follows: 
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+
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                                    (1) 

where kx  is the state variable and 1 1,y un n
k ky u× ×∈ ∈   represent the output and the input, kw  is the process noise, 

and kν  stands for the measuring noise, , , , ,dA B B C F  are the system matrix of appropriate dimensions. 
As shown in Fig.1, the control input is composed of two parts, as shown follows: 

-1 -1-1 1 2k kku u u= +                                          (2) 

where 
11k

u
−

is the basic control input of MPC, it can be calculated by the following Eq.(3): 

 
-11 mpc = ( 1)

k pu K E k k −                                       (3) 
where mpcK  is the gain matrix, ( 1)pE k k −  is an integrated error and calculated by Eq.(20) in Section 3.2. 

The second part 
12 k

u
−

 of the control input is the solution of the enhanced compensation controller, as follows: 
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where -1ˆkx+  is the posterior state variable estimated by Kalman filter and 
-11k

K  stands for the gain matrix. 



 

 

Remark 1. Since the main purpose of the proposed method is to reduce the fluctuation of the control error, it can be 
derived from the theorem about the variance [20] that the variance of the error is equal to the variance of the control output. 
Then, minimizing the variance of error can be converted into minimizing the variance of state controlled system. Therefore, 
reducing the fluctuation of the control error can be converted to optimizing the variance of the state through adding state 
feedback.                                                                                        □  

Remark 2. Due to some state variables cannot be directly measured, the compensator first employs Kalman filter to 
obtain the estimation of the state, and then multiplies with the gain matrix as the output of the compensator. Therefore, the 
gain matrix in Eq.(4) is the focus of the compensator which is used to reduce the variance of the state variable and further 
reduce the tracking error fluctuation, by adding the feedback of the state estimation value.                        □ 

Remark 3. In general, the stability of the predictive control is mainly guaranteed by extending the finite prediction 
horizon to the infinite horizon, but this makes the numerical solution difficult to calculate in the industrial field. Another 
method is the terminal constraint predictive control, which forces the terminal state to return to the equilibrium point by 
adding constraints to the open-loop optimization but adding state constraints to the terminal artificially will greatly increase 
the number of online calculations. Because the state space predictive control is adopted in this paper, the stability of the 
proposed hybrid control method will be proved by recursive analysis of the boundedness of state variables.           □ 

3 Control Algorithm 

3.1 Prediction model 
The main function of the prediction model is to predict the future state. From this point of view, the neural networks 

models with more complex forms may have better effects in simulation. However, considering the complexity of the neural 
network model and the limitation of the high-throughput computing capacity in the industrial field, this paper adopts the 
state space prediction model, which is not only simple in structure, low in calculation cost, but also stable. To obtain the 
analytical formula of the prediction model, we give the following assumptions. 

Assumption 1. Supposing that after k   sampling time, the process noise kw   keeps constant, which is 0,k i kw + =  
1, , 1i p= − , and the measuring noise kν  keeps constant, which is 0k i kv + = , where p  is the prediction horizon, m  

is the control horizon.                                                                               □ 
Remark 4. In the actual process, the noise and disturbances have a large randomness. If the noise and disturbance model 

is introduced into the prediction model, it may cause the phenomenon of overfitting and a larger control error. Therefore, 
the prediction model in this article only considers the main process of the controlled plant [19].                      □ 

Under Assumption 1, expand the predicted value of the system as a combination of known variables. Supposing the state 
of the discrete system described by Eq.(1) is kx  at k  sampling time, then the states after two sampling time are shown 
in follows: 
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By Assumption 1, after k  sampling time in the prediction horizon, the process noise kw  keeps constant, which is 
0, 1, , 1k i kw i p+ = = − , then k p kx +  can be calculated as follows:         
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        (6) 

By Assumption 1, after k  sampling time in the prediction horizon, the measuring noise kν  keeps constant, which is 
0, 1, , 1k i kv i p+ = = − ，then the output 1k ky +  between 1k +  and k p+  sampling time are shown as follows: 
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Define the output as ( 1 )pY k k+   during k   to k p+   sampling time, and define the input as kU   during k   to 
1k p+ −  sampling time.  
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To facilitate analysis, the subscripts in the above matrix only represent the number of vectors (or scalars) in the matrix. 
According to Eq.(7), the recursive expression of the prediction equation is: 

        ( 1 )p x k d fu k kkwY k U vk x+ = + + +                                   (8) 
where, 
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3.2 Predictive controller  
The predictive control objective function reflects the requirements for system control performance. Usually, the 

optimization objective function of predictive control is selected as: 

( ) 2 2
1( , , , ) ( 1 )k k y p k u kJ x U m p Y k k R U+= Γ + − + Γ                             (9) 

where uΓ  is the weighted constraint matrix for the control input, yΓ  is the weighted constraint matrix for the control 
error, 1kR +  is the setpoint during the prediction horizon. 

To clarify the calculation form, the auxiliary variables are defined as follows:  
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Incorporating Eq.(8) into Eq.(10), we can get: 
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Therefore, based on Eq.(11), the predictive control loss function Eq.(9) can be transformed into the following form: 
Tmin

z
ρ ρ                                            (12) 

Since the used prediction model is linear, the objective function is quadratic and does not consider the constraints in the 
control horizon, so the analytical solution of the problem can be obtained directly without solving the open-loop 
optimization problem by numerical methods. It is easy to know the solution of Eq.(12) is: 

* T 1 T( )z M M M b−=   

where T T
, , ( 1 )k y u u y pz U M B E k k   = = Γ Γ = Γ +   0 . Put M  and b  into *z , then the optimized solutions of 

the above predictive control are:  
 * T T T 1 T T () 1 )(k u y y u u u u y y pU E k k−= Γ Γ + Γ Γ Γ Γ +                             (13) 

Since the state variables cannot be measured, the state estimation value ˆ kx +  obtained by Kalman filter should be used 
as the initial state value of the prediction model, and the recursive relationship of the error is: 

 1 ˆ( 1 )p k x f kk d kE k k R x wv+
++ = − − −    (14) 

As shown in Eq.(14), the proposed algorithm has the effect of state feedback compensation, due to the introduction of state 
variable information. 

In summary, the basic predictive control law 
11k

u
−

in the proposed algorithm is calculated as follows: 
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Due to the MPC method only use the first output to the real system, the gain matrix can be calculated by
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3.3 Compensation controller design  
Kalman filter is a very practical state estimation method when the key state variables of actual industrial processes cannot 

be measured in engineering. Usually, Kalman filter is divided into two parts, namely, the state prediction and the state 
updating. The state prediction part is: 



 

 

 -1 -1ˆ ˆk k kx Ax Bu− += +                                    (16) 
  T

-1 -1k k kP AP A Q− += +                                 (17)  
and the state updating part: 
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 ˆ )ˆ ˆ(k k k k kx x K y Cx+ − −= + −                                   (20) 
where ˆ kx −  stands for the priori estimated state and ˆ kx +  is the posterior estimated state. Because the posterior information 

ky  is added to modify it, the estimated value is closer to the real state variable. kK  is the Kalman gain matrix updated 
in Eq.(18) at each sampling moment, kP +  stands for the transfer matrix of posterior estimation, kP−  represents priori 
estimated transfer matrix, kG  is the variance of measuring noise, kQ  is the variance of process noise.  

After the un-measurable state variables have been estimated by the Kalman filter, the optimal gain matrix is required to 
be calculated. Involved in the subsequent analysis, the following assumption which is about the relationship between the 
variables is given. 

Assumption 2. Aim to the system as Eq.(1), the covariance between system state kx , measuring noise kv  and process 
noise kw  is zero, which is: 

xv xw wvP P P= = = 0  
Remark 5. Since the state variables are affected by noise, the covariance between them is not zero, but in actual analysis, 

it is found that the covariance between them is much smaller than the variance of each variable itself. Therefore, for the 
convenience of calculation, it is assumed that they are not related to each other.                                □ 

In linear systems, reducing the fluctuation of the error can be achieved by optimizing the variance of the state variable. 
Given the linear system, this paper just employs a gain matrix 
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 to optimize the state. Then, putting Eq.(20) into Eq.(4) 

can get: 
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Then put 
1 11 1 2k kku u u

− −− = + into Eq.(1):      

         

-1 -1

-1

-1

-1

-1 1 2 -1

mpc 1 -1 -1 mpc

1

-1

-1 mpc mpc -1

mpc -1 1 mpc -1 -1

-1

 ( )
     ( )
         ( )

ˆ         ( ) ( )( )

k k

k

k

k

k k d k

x k k k

k x f k

d k k

k

k

d k x

x Ax B u u B w
A BK S BK K C x BK R
B K K F K S K S v
B BK S w B K K S I K C x

K C
K F

−

= + + +
= − +

+ −
+

− −
−

+ − +

             (22) 

By Assumption 2, the variance between 1kx − , 1kv −  and 1kw −  is zero, then the relationship between them is: 
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kxP  represents the variance of the variable kx . { }D x represents the calculation of the variance of the variable x . Therefore, 
the following formula can be obtained by expanding the variance of each variable: 
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where 𝐿ଵ, 𝐿ଶ, 𝐿ଷ, and 𝐿ସ can be formulated by： 
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Since it is a linear system and 
kxP  can be considered as a function of 
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−
, the optimal gain matrix 
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−
 can be obtained 

by finding the extreme points of 
kxP , as shown below: 
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Then the gain matrix 
11k

K
−

 can be written as follows：  
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In Eq.(26), †( )⋅  is the Moore-Penrose generalized inverse. 
Remark 6. When the matrix is not full rank or the matrix is not square, the inverse of the above matrix does not exist. 

Therefore, the Moore-Penrose generalized inverse[21] is used to solve this problem.                              □ 
Notice that the variance ˆ{ }kD x −  in 2M  can be updated by recursion method, so put Eqs. (2), (21), (15) into ˆ( )kD x − , 

we can get the relationship between ˆ{ }kD x −  and -1ˆkx− , -1kx , -1kv , -1kw , as follows: 
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According to Assumption 2, the covariance between -1ˆkx− , -1kx , -1kw  and -1kv  is equal to zero, and the relationship 
of ˆ{ }kD x −  between 

-1-1 -1ˆ{ }
kk x kD x P R− , ,  can be obtained by expanding Eq.(27), as shown follows: 
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Therefore, the gain matrix 
1-1k

K  of the Kalman filter compensator can be calculated iteratively through Eq.(26). 
In summary, the implementation steps of the proposed En-MPC method are summarized as follows: 

Table 1 The implementation steps of En-MPC 
Algorithm1: The En-MPC algorithm
Step 1: Initialize the system parameters.
Step 2: Estimate the system states -

+
1ˆkx  by Eqs.(14)-(18).

Step 3: Calculate the basic control input 
-11k

u by Eq.(3). 
Step 4: Calculate the gain matrix 

-11k
K by Eq.(26). 

Step 5: Calculate the compensation input 
-12k

u  by Eq.(4).
Step 6: Calculate the control input -1ku  by Eq.(2). 
Step 7: Set 1k k= + and go to Step 2.  

4 Stability Analysis 

MPC obtains an open-loop optimization solution by solving object functions in the finite horizon, but the open-loop 
optimality does not guarantee the stability of the closed-loop control system. Therefore, the stability of the proposed 
enhanced control method needs to be analyzed. The objective function is as follows: 

2 2
1( , , , ) ( 1 )( )k k y p k u kJ x U m p Y k k R U+= Γ + − + Γ                           (29) 

For the optimization problem shown in Eq. (29), there will be an optimized value *
kJ  at sampling time k , and there 

will be an optimized value *
1kJ +  at sampling time 1k + , but the optimized calculation at sampling time 1k +  does not 

guarantee the function value decrease, so the value of the objective function of the next time may appear greater than the 
previous moment. This will cause the output of the system to tend to infinity in the future. In response to this problem, the 
work in [22, 23] summarized predictive control in the infinite horizon, that is, extending the finite horizon prediction to 
infinite to obtain the stability of the system, but this cannot be achieved in actual engineering. The work in [24] proposes a 



 

 

method for constraining the terminal state to ensure the stability of the system, but this will greatly increase the number of 
online calculations. 

By adopting the state-space prediction model and selecting the quadratic objective function, the analytical solution of 
the open-loop optimization problem can be obtained without numerical analysis. About the stability analysis of the 
proposed control algorithm, it is considered to prove the upper bounds of the system states by recursively analyzing the   
state-space functions, since the proposed control method only adds compensation on the basic control input. To prove the 
stability of the system, the assumption is given as follows: 

Assumption 3. For the system shown in Eq.(1), -1kx  is the state of the system at sampling time 1k − , and its estimated 
value is -1ˆkx− , and there is a constant δ  that satisfies the following inequality relationship: 

2
-1 -1ˆk kx xδ− ≤                                            (30) 

Remark 7. -1ˆkx−  is the posterior estimated value of the state by the Kalman filter technique, and -1kx is the state value. In 
the range of reasonable estimation error, there exists a constant δ  such that the respective two norms satisfy the above 
formula.                                                                                         □ 

To facilitate the analysis of the boundedness of state variables, we first make the following transformations to the state 
equation. Integrating the same variables in Eq.(22), the relationship between kx , -1kx , -1ˆkx−  and -1kN  can be established, 
as shown follows: 

-1 -1 -1 -1 -1ˆk k k k k kH NxGx x −= + +                                      (31) 
where, 
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                      (32) 

The theorem to ensure the stability of the proposed algorithm is given below. Under this theorem, the system state 
variables are bounded under the mean square value. 

Theorem 1: Supposing that the Assumption 3 holds, for the system shown in Eq.(1), considering the system parameters 
kH , kG , kN  and 0x , if there exists constants 0 1η< <  and 0ς >  which ensure the following relationship: 

kkH Gδ η+ = , 2 2{ } (1 )kNE η ς≤ − , 2 2
0{ }E x ς≤                       (33) 

It can be obtained that the system states are ultimately bounded in the mean-square sense under the En-MPC algorithm 
which is described by Eqs.(2)-(4).                                                                     □ 

Proof: The boundedness of the state variable will be analyzed under the root mean square by induction. Substitute Eq.(32) 
into 1

T
1}{E x x , and expand it to get an upper bound by Assumption 3, as shown below:  
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According to the above formula, it can be concluded that there is a constant 1β  such that 2
1 1 1
T 2{ }E x x β ς≤ . In the same 

way, the following inequality can be obtained for: 
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Hence, there is a constant 2β  that makes the following formula true: 
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Aim to T
3 3{ }E x x , it has the following relation: 
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Based on the above equations, T
3 3{ }E x x  can be re-written as: 
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2k ≥ , it can be obtained by recursion: 
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Therefore, the mean square Eq.(40) is obtained at sampling time 1k + : 
222

1 1

2 2 2 2 2 2 2

T

2 2

{ ( ) { {

                       2( ) { } { }

                 (1 ) 2 (1 )
                 

} } }

( )1

k k k k k k

k k k k

k k k k

k k

G N

G N

E x x H E x E

H E x E

δ

δ

η ς η ς η η ς
ς η

Η β
β Η η

β Η

+ + ≤ + +

+ +

< + − + −

−+=

 





 
                           (40) 

When the mean square of state satisfies Eq.(39) at k sampling time, then at k+1 sampling time the mean square of state 
also satisfies the following inequality relationship: 

T 2 2 2 2 2 2
1 1 1 1 1} ({ ( )1 )k k k k k k kE x x β β Η β Ηη η ς ς+ + + + +≤ + − =                             (41) 

For the proposed algorithm, under the condition of satisfying Theorem 1, there is always an upper bound of the system 
state variables at any time, which ensures the stability of the system. 

5 Numerical Simulation 

To reduce the control error fluctuations and improve control accuracy, the proposed enhanced model predictive control 
(En-MPC) method mainly suppresses process uncertain dynamics and disturbances through compensation. To fully verify 
the effectiveness and advancement of the proposed method, numerical simulation verification and sewage treatment process 
data verification are carried out. First, consider the 2-input 2-output system described by the following state-space model: 
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   (42) 

where kx  is the system state, ky  stands for the system output, kw  represents the process noise, and kv  is the 
measurement noise. 

 

 
Fig. 2 Setpoint tracking control results with or without proposed control compensation 
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Fig.3 The evolution trend of each element in gain matrix 

11k
K

−
 of compensation controller in different control experiments 

Fig.4 Compensation input Fig.5 State variable and its estimation 

Fig.6 The evolution of error PDF of output 𝑦ଵ Fig.7 The evolution of error PDF of output 𝑦ଶ
  

5.1 Setpoint tracking control experiment under non-Gaussian noise 
During the experiment, the prediction horizon is 𝑝 = 4 , and the control horizon is 𝑚 = 4 . Besides, the PDF 

distributions of process noise and measuring noise are 𝑤௞~𝑁(0,0.01)  and 𝛾௩~0.4𝑁(0,0.01) + 0.6𝑈(−0.02,0.02) , 
respectively, and U(.) is the uniform distribution. Besides, the initial value of the state variable is 𝑥଴ = [0.1 0.2]், the 
initial value of the predictive controller output is 𝑢ଵబ = [0.7 − 0.5]୘, and the initial value of the compensator output is 𝑢ଶబ = [0 0]୘. According to Eqs.(13) and (15), the gain matrix mpcK  can be obtained as: 

mpc

 0.0683   -0.0804    0.1171    0.3357   -0.0459   -0.0705   -0.0017   -0.0596
 0.0858    0.1036    0.0417    0.1422   -0.0286   -0.0561    0.0050   -0.0206

K  
=  
 

 

For comparison, the first 150 moments in the experiment are only using the basic MPC method, and the compensator of 
the proposed En-MPC method is added to the MPC after 150 moments. 

Fig.2 shows the setpoint tracking curves with different control algorithms under the above non-Gaussian noise. Aim to 
the conventional MPC algorithm, it can track the setpoint, but the value of output and input fluctuate greatly which leads 
to a larger control error when the system exists noise. Since the proposed En-MPC algorithm uses a control input 
compensation mechanism, its control output is relatively stable, and the fluctuation of control error is significantly smaller 
than that of the conventional MPC algorithm. This can reduce the wear of the actuator in practical applications and maintain 
the stability of the controlled plant. 
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Fig.8 Control results by different control methods under square wave disturbance 

Fig.9 Compensation input Fig.10 State variable and its estimation 
 
The evolution trend of the each element in the gain matrix 

11k
K

−
 of designed compensation controller, described in 

Eq.(26), is shown as solid line in Fig.3, where 1k  in Fig.3 is the first element of 
11k

K
−

, and the rest is the same. After 150 
hours, it can be seen that the gain matrix evolves slowly at each moment to offset the influence of noise. Fig.4 is the 
compensation input curve of the proposed En-MPC algorithm. It can see that the compensation input maintains a reasonable 
fluctuation within a certain range after 150 hours, and there is no excessive impact input to affect the system stability. Since 
the fluctuation of the state is closely related to the output, the curve of the control state variable is drawn in Fig.5. It is 
found that the fluctuation of the state variable is significantly reduced after the compensation input is added, which is 
consistent with the reduction of the output fluctuation in Fig.2. At the same time, the dotted line in Fig. 5 is the value of 
the state estimation obtained by using the Kalman filter technique. The Kalman filter effectively predicts the fluctuation of 
the state variable which ensures the effectiveness of the compensation input. Fig.6 and Fig.7 respectively show the 
evolution of the tracking error PDF curves of 𝑦ଵ  and 𝑦ଶ  after adding compensation. The error PDF distribution has 
become taller and sharper after adding compensation. Therefore, the addition of the compensator effectively reduces the 
fluctuation of the control error and improves the control accuracy.  

5.2 Disturbance rejection experiment under non-Gaussian noise 
Under the above-mentioned non-Gaussian noise conditions, square wave disturbance was further added to the control 

output to test the disturbance rejection performance of the proposed method. Specifically, a square wave disturbance with 
an amplitude of 0.02 and a period of 20 is added to the output of 𝑦ଵ, and a square wave disturbance with an amplitude of 
0.03 and a period of 20 is added to 𝑦ଶ. The other parameter settings in the experiment are consistent with the above 
experiment, and the results are shown in Figs.8-10. 

Fig.8 is the control effect curves of the two algorithms under noise and square wave disturbance. It can be seen that the 
conventional MPC method can achieve approximate tracking of the setpoint, but the output and the input fluctuate greatly, 
that is the control error is very large. Under the proposed En-MPC method which adds the proper compensation to the input, 
the output of the system is close to the setpoint, with small control errors, and is very smooth and stable. Fig.9 is the 
compensation input curve of the proposed En-MPC method, and Fig.10 is the corresponding state variable and its estimated 
curve. Even under square wave disturbance, the proposed method achieves precise estimation of the state which ensures 
the effectiveness of the compensation. As shown by the dotted line in Fig.3 is the evolution curve of each element in the 
gain matrix 

11k
K

−
  of designed compensation controller in this experiment. It can be seen that after adding the output 

0 20 40 60 80 100 120 140 160 180 200
0.15

0.2

0.25

0.3

20 40 60 80 100 120 140 160 180 200
Time

0.15

0.2

0.25

0.3

0.35

MPC
En-MPC
Setpoint

0 50 100 150 200
-0.5

0

0.5

1

MPC
En-MPC

0 50 100 150 200
Time

-1

0

1

2



 

 

disturbance, the gain matrix evolves slowly at each moment which is correspond to Figs.9-10. 
In summary, although under the dual influence of noise and output disturbance, the control output of the system can 

remain stable and smooth, with only small, low-frequency fluctuations near the setpoint by the proposed En-MPC method. 
At the same time, the control input adjustment of the proposed method is also stable and smooth, which is beneficial to 
maintain the stability of the system. Therefore, the proposed method that uses the Kalman filter to accurately estimate the 
unknown state and uses the compensation to effectively reduce the control error can improve the performance of the 
setpoint tracking and disturbance rejection of the original single predictive control method. 

6 Sewage treatment process data verification 

The activated sludge method is the most widely used process in the wastewater treatment. As shown in Fig.11, this 
process mainly uses the microbial population in the activated sludge to absorb, oxidize, and decompose the organic matter 
in the sewage, and then remove the nitrogen and phosphorus pollutants through nitrification, denitrification, phosphorus 
release and absorption. It mainly includes four stages: the primary treatment uses physical methods such as grids and grit 
tanks to filter larger particulate pollutants and preliminary purification. The secondary treatment uses biochemical reactions 
to remove soluble organic pollutants, sulfides, etc. The tertiary treatment uses an activated carbon filtration method to 
purify organic pollutants. Finally, the remaining sludge impurities are treated through the processes of concentration and 
nitrification and then recycled. 

As shown in Fig.11, the denitrification-nitrification process in the biochemical tank is the core process of the activated 
sludge method, which determines the quality of the final effluent of the sewage treatment. The quality of the denitrification-
nitrification reaction process depends on the two key variables of the sewage treatment, which are the nitrate-nitrogen 
concentration DNO,2 in the second zone of the biochemical pond and the dissolved oxygen concentration DO,5 in the fifth 
zone. Aim to these two variables, a higher DNO,2 will damage the denitrification environment and increase the nitrate-
nitrogen content in the effluent. On the contrary, it will slow down the denitrification process and reduce the total nitrogen 
removal rate. In addition, too high DO,5 will destroy the flocculation of microorganisms in the activated sludge and increase 
energy consumption, while too low DO,5 will affect the decomposition effect of activated sludge on organic matter and 
increase sludge expansion. Therefore, achieving high-performance control of DNO,2 and DO,5 is the key to ensuring the 
stable operation of the sewage treatment process and the quality of the effluent. In actual production, DO,5 is usually 
controlled by adjusting the five-zone dissolved oxygen conversion coefficient KLa,5 which is adjusted by a blower, and 
DNO,2 is controlled by adjusting the internal flow Qa which is adjusted by the reflux pump. However, due to the uncertainty 
and coupling of the biochemical reaction process, as well as the random and non-stationary fluctuations of some factors, 
the traditional PID control method has a poor control effect, while the work in [25] uses neural networks and combined 
with the multi-gradient method to solve the multi-objective control method is difficult to implement in engineering. The 
En-MPC method proposed in this paper adds compensation to the control input based on the MPC algorithm to improve 
the control effect without changing the existing hardware facilities. The calculation amount is low and the stability is 
guaranteed, so it has better practicability. 

First, based on the sewage treatment process data, the subspace identification algorithm in [16] is used to obtain the 
prediction model of the form described in Eq.(1), where the system matrix parameters are shown in Eq.(43). 
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Fig.11 Flow chart of sewage biochemical treatment 



 

 

 
Fig.12 Prediction effects of 𝑆ேை,ଶ and 𝐷ை,ହ by subspace identification algorithm 

Fig.13 Setpoint tracking control results of DO,5 and DNO,2 with different control method 
 

As shown in Fig.12, the output of the model can predict the changes of the actual value precisely. The prediction error PDF 
curves of DNO,2 and DO,5 also basically obey the high and sharp Gaussian distribution. Therefore, the established model can 
predict DO,5 and DNO,2 to meet the precision requirements of predictive control. Then, the proposed En-MPC method is 
used to control DNO,2 and DO,5 in the sewage treatment process. The relevant key parameters in the experiment are set as 
follows: the interchangeable step signals are used as the tracking targets of DNO,2 and DO,5. The prediction horizon p is 4 
and the control horizon m is 4. According to Eqs.(13) and (15), the gain matrix mpcK  can be obtained as: 

mpc

-0.0037    0.0010    0.0011   -0.0157   0.0223    0.0222    0.2776   -0.0967
 0.0015   -0.0007    0.0098    0.0041   -0.0098    0.0332    0.1536   -0.0031

K  
=  
 

 

A sequence that obeys the distribution of 𝛾௩~0.4𝑁(0,0.03) + 0.6𝑈(−0.02,0.02) represents the measurement noise that 
exists in the sewage treatment process. To test the disturbance rejection performance of the proposed method, this paper 
adds a square wave disturbance with period of 20 and amplitude of 0.05 to DNO,2 and a square wave disturbance with period 
of 20 and amplitude of 0.03 to DO,5. 

Under the simultaneous action of non-Gaussian noise and output disturbance, the control curve of DNO,2 and DO,5 are 
shown as Fig.13, by the proposed En-MPC method and the conventional MPC method. Due to the combined effect of 
square wave disturbance and non-Gaussian noise, the value of DNO,2 and DO,5 fluctuates greatly and leads to a large control 
deviation under the conventional MPC method. It will lead to the unqualified water quality of the final effluent. However, 
under the proposed En-MPC method, the actual DNO,2 and DO,5 track the change of the setpoint well through the effective 
state estimation and control input compensation mechanism. Besides, the two input curves of KLa,5 and Qa under the 
proposed method are much smoother than the conventional MPC method, and the fluctuations are smaller. Fig.14 shows 
the evolution trend of each element in the gain matrix 

11k
K

−
 of the compensation controller after unifying and normalizing 

the data. It can be seen that the gain matrix is still slowly evolving to offset the output disturbance. Fig.15 contains the 
output curve of the compensator and the state variable estimation curve which is correspond to Fig.14. For the estimation 
of the unknown state, the Kalman filter effectively tracks the change of the actual state variable and ensures the effective 
calculation of the control compensation input. Besides, statistical data shows that the computational complexity of En-
MPC has been increasing 10.3% compared with the conventional single MPC method, but the control performance of DNO,2 
and DO,5 has been improved significantly.  
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Fig.14 The evolution trend of each element in gain matrix 
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Fig.15 Compensation input (left), state variable and its estimation (right) 

7 Conclusion  

Aim to the problem of large fluctuations in control errors caused by non-Gaussian noise, model mismatch, external 
disturbance in the actual industrial plant, this paper proposes a novel enhanced predictive control method. Based on the 
state-space model predictive control algorithm, it uses Kalman filter to estimate unknown states and combine with the state 
gain matrix to obtain control compensation. Specifically, the Kalman filter technology is first used to obtain the posterior 
estimated value of the un-measurable state variable, and then it is multiplied by the gain matrix as the compensation and 
added with the basic input as the final input to act on the controlled plant to enhance the control performance. The gain 
matrix is updated iteratively through a recursive relationship based on the variance of noise and state at the current moment. 
Through inductive reasoning, the upper bound of the system state in the root-mean-square sense is proved, which ensures 
the stability of the proposed control method. Numerical simulation and sewage treatment process data experiment have 
verified the effectiveness, advancement, and practicability of the proposed method.  

CRediT authorship contribution statement 

Xiaoyao Sun: Investigation, Methodology, Validation, Writing-original draf, Softerware. Ping Zhou: Conceptualization, 
Methodology, Writing-review & editing, Formal analysis, Supervision. Jinliang Ding: Writing-review & editing, Formal 
analysis. Junfei Qiao: Project administration, Funding acquisition, Supervision. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper. 

Acknowledgment  

This research is supported by the National Natural Science Foundation of China (61890934, 61790572, 61890930, 
61991400), the Liaoning Revitalization Talents Program (XLYC1907132), and the Research Funds for the Central 
Universities (N180802003). 

Co
m

pe
ns

at
io

n 
of

 u
1

Co
m

pe
ns

at
io

n 
of

 u
2



 

 

References 

[1] Grüne, L., & Pannek, J. (2017). Nonlinear Model Predictive Control. Springer, Cham, 45–69. 
[2] Berberich, J., Köhler, J., Müller, M. A., & Allgöwer, F. (2020). Data-driven model predictive control with stability and robustness guarantees. IEEE 

Transactions on Automatic Control, 66(4), 1702–1717. 
[3] Cui, D., & Li, H. (2019). Model predictive control of nonholonomic mobile robots with backward motion. IFAC-PapersOnLine, 52(24), 195–200. 
[4] Coron, J.-M., Gruüne, L., & Worthmann, K. (2020). Model predictive control, cost controllability, and homogeneity. SIAM Journal on Control and 

Optimization, 58(5), 2979–2996. 
[5] Hewing L, Wabersich KP, Menner M, & Zeilinger MN. (2020). Learning-based model predictive control: Toward safe learning in control. Annual 

Review of Control, Robotics, and Autonomous Systems, 3, 269–96. 
[6] Mayne, D. Q. (2014). Model predictive control: recent developments and future promise. Automatica, 50(12), 2967–2986.  
[7] Wang, H. (2012). Bounded Dynamic Stochastic Systems: Modelling and Control. Springer Science & Business Media, 23–46. 
[8] Liu, Y., Wang, H., & Guo, L. (2014). Observer-based feedback controller design for a class of stochastic systems with non-Gaussian variables. 

IEEE Transactions on Automatic Control, 60(5), 1445–1450. 
[9] Yi, Y., Zheng, W. X., Sun, C. Y., & Guo, L. (2016). DOB fuzzy controller design for non-Gaussian stochastic distribution systems using two-step 

fuzzy identification. IEEE Transactions on Fuzzy Systems, 24(2), 401–418. 
[10] A. Wang, & H. Wang. (2021). Survey on stochastic distribution systems: a full probability density function control theory with potential applications. 

Optimal Control Applications and Methods, 42(6), 1812-1839. 
[11] Yin, X., Zhang, Q., Wang, H., & Ding, Z. (2019). RBFNN-based minimum entropy filtering for a class of stochastic nonlinear systems. IEEE 

Transactions on Automatic Control, 65(1), 376–381.  
[12] J. A. Delgado-Aguiñaga, V. Puig. & F. I. Becerra-López. (2021). Leak diagnosis in pipelines based on a Kalman filter for Linear Parameter Varying 

systems. Control Engineering Practice, 115, 104888, 
[13] J. Valluru, S. C. Patwardhan, & L. T. Biegler. (2018). Development of robust extended Kalman filter and moving window estimator for simultaneous 

state and parameter/disturbance estimation. Journal of Process Control, 69, 158-178. 
[14] Z. Wu, D. Rincon, & P.D. Christofides. (2020). Process structure-based recurrent neural network modeling for model predictive control of nonlinear 

processes. Journal of Process Control, 89, 74-84. 
[15] Kittisupakorn, P., Thitiyasook, P., Hussain, M. A., & Daosud, W. (2009). Neural network based model predictive control for a steel pickling process. 

Journal of Process Control, 19(4), 579-590. 
[16] M. Inoue. (2019). Subspace identification with moment matching. Automatica, 99, 22-32. 
[17] Y. Zhao, & S.J. Qin. (2014). Subspace identification with non-steady Kalman filter parameterization. Journal of Process Control, 24, 1337-1345. 
[18] Jia C., Wang, X., & Zhou, K. (2020). Design of built-in permanent magnet synchronous motor speed controller based on linear variable parameter 

model predictive control. Transactions of China Electrotechnical Society, 35(22), 4666–4669. 
[19] Chen, H. (2013). Model Predictive Control. Beijing: Science Press, 37–60. 
[20] Grimmett, G. S. (2020). Probability and Random Processes. Oxford University Press, 102–132. 
[21] Barata, J. C. A., & Hussein, M. S. (2012). The Moore–Penrose pseudoinverse: A tutorial review of the theory. Brazilian Journal of Physics, 42(1-

2), 146–165. 
[22] Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. (2000). Constrained model predictive control: Stability and optimality. Automatica, 

36(6), 789–814.  
[23] Lee, J. H. (2011). Model predictive control: Review of the three decades of development. International Journal of Control, Automation and Systems, 

9(3), 415–424. 
[24] Mayne, D. Q., & Michalska, H. (1988). Receding horizon control of nonlinear systems. In Proceedings of the 27th IEEE Conference on Decision 

and Control, 9, 464–465. 
[25] Han, H. G., Qian H. H. & Qiao J. F. (2014). Nonlinear multi-objective model-predictive control scheme for wastewater treatment process. Journal 

of Process Control, 24(3), 47-59. 
 



Declaration of interests 
 
 
√ The authors declare that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work reported in this paper. 
 
☐The authors declare the following financial interests/personal relationships which may be 
considered as potential competing interests: 

Conflict of Interest


